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a b s t r a c t

SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in
Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-
vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid
transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively
cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution
since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heli-
othis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster,
Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenop-
tera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex
topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional
SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2
from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic
sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the
D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens
q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family,
supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran
and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary
time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran
SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in
C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these
species.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

SNMPs are insect membrane proteins which associate with
pheromone sensitive neurons in Lepidoptera and Diptera (Rogers
et al., 1997, 2001a,b; Vogt, 2003; Benton et al., 2007; Forstner et al.,
2008; Jin et al., 2008). SNMPs comprise a sub-clade of insect genes
related to the human protein fatty-acid transport protein CD36
(Fig. 1A; Nichols and Vogt, 2008). The first SNMPs were identified
from Lepidoptera (Rogers et al., 1997, 2001a,b; Krieger et al., 2002;
Forstner et al., 2008). SNMPs from several lepidopteran species,
here referred to as SNMP1, were shown to be antenna specific,
associating with pheromone specific olfactory neurons in a manner

suggesting they play a central role in pheromone detection (Rogers
et al., 1997, 2001a,b; Krieger et al., 2002). A second lepidopteran
SNMP, SNMP2, also associates with pheromone sensitive sensilla
but has been shown to express in sensilla support cells rather than
neurons (Rogers et al., 2001b; Forstner et al., 2008). Recently,
a Drosophila melanogaster SNMP1 (SNMP1Dmel, cg7000) was found
to be essential for the detection of the pheromone cis-vaccenyl
acetate (CVA) (Benton et al., 2001; Jin et al., 2008); this protein was
not only expressed in antennae, but also in other body parts such as
legs and wings (Benton et al., 2007; Miller et al., 2007).

We recently surveyed the insect CD36/SNMP gene family from
the genomes of 6 insect species: the fruitflies (Diptera) D. mela-
nogaster and Drosophila pseudoobscura; the mosquitoes (Diptera)
Anopheles gambiae and Aedes aegypti; the honeybee (Hymenoptera)
Apis mellifera, and the beetle (Coleoptera) Tribolium castaneum
(Nichols and Vogt, 2008). This study suggested that the SNMPs
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comprised one of three major clades of the insect CD36 gene family;
the SNMP clade showed a complex topography with a well
supported SNMP1 sub-clade plus additional SNMP genes. To resolve
this topography, our current study focuses on the SNMP clade from
the dipteran and lepidopteran genomes, adding the SNMP genes of
the mosquito Culex pipiens quinquefasciatus and the silk moth
Bombyx mori. These genes are compared with homologues from
Hymenoptera and Coleoptera affording a survey of the majority of
the holometabolous insect lineage (Fig. 1B), which includes at least
80% of all known insect species. The Holometabola are thought to
have emerged around 300 þ million years ago (Mya), and the
Lepidoptera/Trichoptera and Diptera to have diverged around 290
Mya (Grimaldi and Engel, 2005). The Drosophila and mosquito

lineages are thought to have diverged 240 Mya (Grimaldi and Engel,
2005). The D. melanogaster and D. pseudoobscura lineages diverged
65–43 Mya (O’Grady, 1999; Tamura et al., 2004), and are among the
most widely diverged genomes available for this genus. Mosquitoes
(Culicidae) are comprised of three suborders, two of which include
the blood feeding genera: Culicinae (including Aedes sp. and Culex
sp.) and Anophelinae (including Anopheles sp.). The Culicinae and
Anophelinae lineages diverged 200–145 Mya (Krzywinski et al.,
2006) while the Aedes and Culex lineages diverged 52–24 Mya
(Foley et al., 1998).

Our previous characterization of the insect CD36 gene family relied
primarily on the annotated sequences provided in the genome data-
bases (Nichols and Vogt, 2008); many of these annotations were
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Fig. 1. A. Neighbor joining tree of insect CD36 homologues (MEGA4, pairwise gap deletion due to sequence divergence). All non-SNMP sequences used were identical to those
reported in Nichols and Vogt (2008), where they are more fully described; SNMP sequences (Clade 3) are noted in Supplementary Materials (Table 2), and their relationships are
shown in more detail in Fig. 4. emp, crq, peste, ninaD, santa maria refer to characterized D. melanogaster genes (see Nichols and Vogt, 2008). Bootstrap support (1000 replicates) is
indicated for the major clades. B. Phylogeny of holometabolous lineages and species used in this study. Numbers indicate millions of years (Mya) since indicated lineages diverged
(see text).
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truncated or otherwise missing elements. For the current study, we
used cDNA sequences of SNMP1 and SNMP2 from D. melanogaster and
A. aegypti, as well as BAC (Bacterial Artificial Chromosome) derived
genomic sequences from A. aegypti, as models for proposing corrected
sequences of orthologues in D. pseudoobscura and A. gambiae genomes
and for identifying orthologues in the Culex pipiens q. genome. We
similarly used published Lepidoptera SNMP1 and SNMP2 cDNA
sequences to identify corresponding genes from the B. mori genome.
We then used these revised sequences to reanalyze the SNMP clade,
demonstrating the existence of two well supported sub-clades,
SNMP1 and SNMP2, throughout the dipteran and lepidopteran line-
ages, and plausibly throughout the Holometabola.

2. Methods

2.1. Animals and tissue collection

D. melanogaster (W1118) used in this study were reared on
a standard diet (20 �C, 16h:8h L:D); 3–5 day old adults were
collected, frozen, lyophilized, and processed as described below. A.
aegypti eggs were graciously provided by Mark Brown (University
of Georgia, Department of Entomology) and raised on a larval diet
(pond fish food) at 27 �C (16h:8h L:D). Newly ecdysed pupae were
transferred with water to small cups in cages (BioQuip Products,
#1450B) for adult emergence; adults were provided with sugar
water (20% sucrose) via cotton wicks. For adult collection, cages
containing 7-day-old adults (and otherwise empty) were lowered
into a �70 �C chest freezer and flash frozen; bodies were collected
from the cage floors still frozen and subsequently dried by lyoph-
ilization. Lyophilized body parts (D. melanogaster or A. aegypti)
were dissected under a stereo microscope at room temperature and
collected in vials (1.5 ml) containing 95% ethanol; the ethanol was
subsequently removed by pipette, with the final residue removed
under vacuum (SpeedVac). Dried tissues were processed as
described below for mRNA isolation.

2.2. cDNA and genomic sequencing of D. melanogaster and
A. aegypti SNMPs

PCR primers and sequence information including tissue sources
are listed in Supplementary Materials (Tables 1 and 2). cDNA and
genomic sequences obtained through this project and submitted to
GenBank include partial sequences of SNMP1Dmel derived from
various tissues (EF596938 head, EF560171 wing, EF560170 leg), cDNA
sequences of SNMP2Dmel (EU189152), SNMP1Aaeg (EU246941)
and SNMP2Aaeg (EU189151), BAC derived genomic sequences of
snmp1Aaeg (FJ387158) and snmp2Aaeg (FJ387159), and sequences of
A. aegypti BAC clones BL7I-114 (FJ387160, including snmp1Aaeg) and
BL14K-12 (FJ387161, including snmp2Aaeg).

For SNMP expression studies (Fig. 2), mRNA was isolated from
tissues collected and pooled from 50 individuals (mixed gender
D. melanogaster or male or female A. aegypti); equivalent aliquots of
mRNA were processed for cDNA synthesis. Control target sequences
(Fig. 2) were ribosomal protein L32 (RpL32, D. melanogaster,
href ¼ ‘‘genbank:NM_079843’’>NM_079843) or ribosomal protein
S17 (RpS17, A. aegypti, AY927787). Non-quantitative PCR reactions
were carried out through 30 cycles (see below).

Messenger RNA was isolated using TRIzol� LS Reagent (invi-
trogen) or by acid-phenol extraction (Chomczynski and Sacchi,1987).
cDNA was synthesized (SuperScript� III RT, invitrogen) and amplified
by PCR (Platinum� Taq DNA Polymerase, regular for tissue specificity
studies or ‘‘high fidelity’’ for cloning; invitrogen). PCR products were
gel purified as needed (Geneclean Turbo�, Q-BIOgene), and inserted
into plasmid vectors for subsequent analysis TOPO� TA Cloning Dual
Promoter Kit, invitrogen. Cloned PCR products were sequenced by

cycle sequencing by the University of South Carolina EnGenCore
(Joe Jones, Director). Near full length sequences of SNMP2Dmel,
SNMP1Aaeg and SNMP2Aaeg were obtained from cDNAs derived
from various tissues, and submitted to GenBank. Partial sequences
of SNMP1Dmel from head, wing and leg were also obtained and
submitted to GenBank.

The coding and upstream regions of the snmp1Aaeg and
snmp2Aaeg genes were obtained by sequencing two clones isolated
from an A. aegypti BAC genomic library (Shizuya et al.,1992; Jiménez
et al., 2004; Lobo et al., 2007); the library was screened and clones
were generously provided by Dave Severson and Becky deBruyn
(Notre Dame University). BAC clones were sequenced using 454
technology by the University of South Carolina EnGenCore. See
Supplementary Materials (Methods) for details.

2.3. Annotation of SNMP genes from available genomes

Many of the SNMP sequences characterized in this study were
previously identified (see Nichols and Vogt, 2008); new sequences
include those from Culex pipiens q. and the snmp2 gene of B. mori.
For the previous study, sequences were accepted as presented in
the published annotations. For the current study, cDNA sequences
from D. melanogaster, A. aegypti and Manduca sexta were used
as models to modify these annotations for detailed analysis;
annotations, modifications and sequences are described in our
Supplementary Materials (Methods, Tables 2 and 3). All cDNA
sequences used in this study (e.g. Fig. 4) are listed in Supplementary
Materials (Sequence Data).

2.4. Alignments, trees, percent identity, dN/dS

ClustalX v1.81 (Larkin et al., 2007) was used for amino acid
alignments, using default alignment parameters. Mega 4 (Tamura
et al., 2007) was used to construct Neighbor-joining trees (1000
bootstrap replicates, nodes collapsed to 50% bootstrap support) and
to derive percent identities and synonymous and non-synonymous
(dS, dN) values (Nei-Gojobori model with Jukes-Cantor correction).
For dS and dN calculations, nucleotide sequences were aligned to
their corresponding codon (amino acid) alignments, non-over-
lapping ends were trimmed, any remaining start and stop codons
were removed and codons split by introns were removed.

3. Results

Complementary DNAs encoding near-full length SNMP2 of D.
melanogaster (SNMP2Dmel) and SNMP1 and SNMP2 of A. aegypti
(SNMP1Aaeg and SNMP2Aaeg) were obtained by PCR, using primers

Fig. 2. SNMP1, SNMP2 and control PCR products were amplified (non-quantitatively)
from cDNAs of D. melanogaster and A. aegypti tissues using primers listed in Supple-
mentary Materials (Table 1). For D. melanogaster, male and female (m/f) tissues were
combined; for each tissue, SNMP2Dmel and control (RpL32) products were generated
under identical reaction conditions, except for primers; SNMP1Dmel products were from
a separate experiment and control products are not shown. For A. aegypti, male (m) and
female (f) tissues were analyzed separately; for each tissue, SNMP1Aaeg, SNMP2Aaeg and
control (RpS17) products were generated under identical reaction conditions, except for
primers. H, head with antennae; A, antennae; L, legs; W, wings.

R.G. Vogt et al. / Insect Biochemistry and Molecular Biology 39 (2009) 448–456450



designed to annotated sequences previously identified by Nichols and
Vogt (2008). Genomic sequences for SNMP1Aaeg and SNMP2Aaeg
were obtained from BAC clones generously supplied by Dave Sev-
erson and Becky deBruyn (Notre Dame University). Expression of
D. melanogaster and A. aegypti SNMP1 and SNMP2 was confirmed by
PCR (non-quantitative) of cDNAs synthesized from mRNAs isolated
from a variety of tissues including heads/antennae, legs and wings
(Fig. 2). The identities of these PCR products were confirmed by
sequencing. The near-full length cDNA and genomic (BAC) SNMP
sequences were submitted to GenBank, as were partial SNMP1Dmel
cDNA sequences derived from head, leg and wing tissues (see
Supplementary Materials: Table 2).

The D. melanogaster and A. aegypti SNMP cDNA sequences, and
an available SNMP1Dmel cDNA were used as models to identify and
annotate orthologues from the genomes of D. pseudoobscura,
A. gambiae and C. pipiens q. Genes encoding SNMP1 and SNMP2 of
B. mori (snmp1Bmor and snmp2Bmor) were identified and anno-
tated from the genome of B. mori using a published cDNA of
SNMP1Bmor and published cDNAs of SNMP2s identified from other
Lepidoptera. Please see Supplementary Materials (Methods) for
details of these activities, and Supplementary Materials (Tables 2
and 3) for all accession numbers and annotations, and for predicted
cDNA and amino acid sequences of all taxa used in this study.

Fig. 3 shows an alignment of SNMP proteins from the Diptera
and Lepidoptera species. This figure notes intron insertion sites and
their phase (a codon not split by the intron has phase 0, a split
codon has phase 1 or 2 depending on whether the split is between
nucleotides 1–2 or nucleotides 2–3). Intron insertion sites are noted
by letters. All homologous intron insertion sites have the same
phase, both within a specific SNMP and between SNMP1 and
SNMP2, supporting the evolutionary relatedness between these
genes. Many of these sites, including their phase, are conserved
between Diptera and Lepidoptera.

Fig. 4 shows a Neighbor Joining tree of all SNMP sequences listed
in Supplementary Materials (Tables 2 and 3). The topology of this
tree is rooted against the larger CD36 gene family (Fig. 1A) at
a position noted by an asterisk. This analysis suggests two SNMP
sub-clades: SNMP1 and SNMP2. Among the Lepidoptera and
Diptera, only the dipteran mosquito C. pipiens q. shows an expan-
sion of the SNMP1 genes. Three SNMP1Cpip genes were identified
in the genome; these were arrayed in an uninterrupted series in
a region spanning 31,381 bp; the three genes are separated by 4704
and 7770 bp respectively, have identical intron insertion site
topology (Table 1), and share 67–81% amino acid identity (Table 2),
all strongly suggesting they resulted from gene duplication events
distinct from the A. aegypti and A. gambiae lineages.
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SNMP1Msex  NQLRFSLFGLKNHTVDSRVVTVKRGIKNVMDVGQVVAMDGAPQLEIWN--------DHCNEYQGTDGTIFPPFLTQ--KDRLQSYSADLCRSFKPWFQKTTYYRGIKTNHYIAN---MGDFANDPELNCFCETPE-
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SNMP1Dmel  LDTCPPP----KGTMNLAACVGGPLMASMPHFYLGDPKLVADVDG-LNPNEKDHAVYIDFELMSG---TPFQAAKRLQFNLDMEPVEGIEPMKNLPKLILPMFWVEEGVQLNKTYTNLVKYTLFLGLKINSVLRWS
SNMP1Dpse  LDTCPP-----RGTMNLAPCVGGPLLASMPHFYNGDPKLVAAVDG-LHPNEKDHAVYIDFELMSG---TPFQAAKRLQFNLDMEPVEGIEALKNLPKLILPLFWIEEGVHLNKTYTNMVKYTLFLGLKFNSGLRWT
SNMP1bCpip -EDCPP-----KGTMDLAPCLGAPLLGSKPHFIDADPKLLEEVQG-LEPNREDHDMFINFELISG---TPVSAAKRLQFNLEMEPVRDHEVLGNLPNVILPVFWVQEGVSLNKTWTNQLKYQLFLGLKFNATVKWL
SNMP1cCpip -EDCPP-----KGTMDLSMCIGVPILGSKPHLLDADPKLLEGVDG-LEPNEAEHDVFIHFELLSG---TPVSGAKKLQLNLEVEPIRDHEVLGNLPTVVLPMIWVEEGVSLNKTWTNQLKYQLFLGLKFNATVKWL
SNMP1Agam  -DDCPP-----KGTMDLSPCLGGPIIGSKPHFYGADPKLVEAVDG-LAPNKAAHDVYIHFELASICWVSPVSAAKRLQFSMELGPIRDHELFGQLPDVILPMFWAEEGASLNKTWTNQLKYQLFLGLKFNATVKWL
SNMP1Aaeg  -DICPP-----KGTIDLAPCLGAPIIGSKPHFYDSDPKLLAAVDG-LTPNEKDHDVYIHFQLLSG---TPVSAAKRLMFSMEIEPIRDHAVLGNLPTVILPLFWAEEGASLNKTWTNQLKYTLFLGLRFNTAVKWL
SNMP1aCpip -DGCPP-----KGTIDLGPCVGAPILGSKPHFIGGDPKLLRDVDG-LEPDPKEHDIFIHYDLQTG---TPFSAAKRLQFNLELEPIRGHEVFGKLPKMVLPMFWAEEGASLNKTWTKQLK-PLFMIRKFNATVKWL
SNMP1Bmor  --KCPP-----KGLMDLYKCIKAPMFVSMPHYLEGDPELLKNVKG-LNPNAKEHGIEIDFEPISG---TPMVAKQRIQFNIQLLKSEKMDLLKDLPGTIVPLFWIEEGLSLNKTFVKMLKSQLFIPKRVVSVVCWC
SNMP1Msex  --KCPP-----KGLMDLTKCVKAPMYASMPHFLDADPQMLENVKG-LNPDMNEHGIQIDFEPISG---TPMMAKQRVQFNMELLRVEKIEIMKELPGYIVPLLWIEGGLALNKTFVKMLKNQLFIPKRIVSVIRWW

k (k) l m

1

SNMP1Dmel  LITFSLVGLMFSAYLFYHKSDSLDINS---ILKDNNKVDDVASTKEPLPSANPKQ------------SSTVHPVQLPNT-------LIPGTNPATNPATHHKMEHRERY
SNMP1Dpse  LITLSLVGLMSAAYLFYQNSDSLDITLPPKILKEVNKVADAAMNSKMFPEKAPTT------------PQTTIPGTNPPTNHGAQPPPAVASVPGIIPPLSLKMEQAQRY
SNMP1bCpip TIIIGTVGSIGAGIMHYKRSTKSVNVTPVEA--VSNGSGRIISVSSAGKDREAIN----------------NSKNLPAVLD--------GLG-ERIPKMAP---VEQRY
SNMP1cCpip TIIVGTLGSIGAGFMHYKRTSQVTQVEQVAAGAKSEGGGRFISVSAATTEEGKNG----------------GGGNLPAVLD--------GLDPSGISKRMSDPAQKERY
SNMP1Agam  TIIIGTVGAVGSAYMYFRKETKTTDVAPVDVSTPDTNP------SSAKDGVVNVS----------------LGRNLPPVID--------GLD--KPPKLRATELQQERY
SNMP1Aaeg  TIIIGTIGTIVGGFMHYKRTTKMVNVTPVQSVNGSSAKGKGAGMTVVGHQPDSKGGSVTAPVIPSAKDLLQNSRNLPTVIE--------GLD---KPQKVTVTEMQERY
SNMP1aCpip SIVLGTLGTIGAGFMHYKLHIKPVNVRPMEVQKTTVKEVEPSVETNGTGKEPPEK--------IEPRVVESAHRNLPPLFDG-------GLA---GKQKPVPSDQRER-
SNMP1Bmor  MISFGSLGVIAAVIFHFKGDIMHLAVA------GDNSVSKIKPENDENKEVGVMG-----------------QNQEPAKVM----------------------------
SNMP1Msex  LLSFGMLAALGGVIFHFKDDIMRIAIK------GDSSVTKVNPEDGEQKDVSVIG-----------------QSHEPPKINM---------------------------

n

A

Fig. 3. Alignment (ClustalX) of Diptera and Lepidoptera SNMP amino acid sequences; the sequences included are those for which a valid cDNA model is available. While there is no
available genomic sequence for M. sexta, this species is included for comparison with B. mori. 3A shows the SNMP1 proteins and 3B the SNMP2 proteins; these were aligned as one
group and separated for this presentation (six gaps in the SNMP1 alignment are against the SNMP2 alignment; one gap in the SNMP2 alignment is against the SNMP1 alignment).
Insertion sites are noted by boxes (30 amino acid of each exon); phases of boundary codons are noted (0, 1, 2). Homologous intron insertion sites are also noted (a–n) for cross
reference with Table 1.
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The Neighbor Joining tree (Fig. 4) also includes sequences from
Hymenoptera (A. mellifera) and Coleoptera (T. castaneum). SNMP1 and
SNMP2 genes are represented in both taxa. T. castaneum shows an
apparent Coleoptera specific expansion of the SNMP1 genes. Four
SNMP1Tcas genes are arrayed in an uninterrupted series in a region
spanning 12,727 bp; annotated gene sizes range from 1885–31,381 bp,
intervals between genes range from 260 to 1820 bp, each annotation
indicates 7 or 8 exons. The proximity of these 4 SNMP1Tcas genes
strongly suggests they derived from a gene duplication event. We have
not further analyzed the A. mellifera and T. castaneum SNMP genes due
to an absence of appropriate cDNA models.

Table 1 compares the presence of homologous intron insertion
sites and the sizes of homologous introns and exons of those
sequences shown in Fig. 3. Some introns, especially those in
A. aegypti, are quite large, around 10–15 kb. The large size of introns
is somewhat species specific, correlating with the concentration of
repetitive elements within those species’ genomes (e.g. The Inter-
national Silkworm Genome Consortium, 2008; Nene et al., 2007). In
most cases, large introns did not obscure the identification of
coding exons. However, initial exons were often difficult to predict
if their model genes contained a short first exon followed by a large
first intron.

Table 2 compares the amino acid sequence identities of the
dipteran and lepidopteran SNMPs included in Fig. 3. Sequence
identities are quite high when comparing the same gene within an
insect Order, but predictably decrease with phylogenetic distance.
SNMP1 vs. SNMP2 sequence identities are quite low, consistent
with an early divergence for these two gene sub-clades.

Table 3 compares the synonymous (dS) and non-synonymous
(dN) changes that have occurred in the coding nucleotide
sequences of the dipteran SNMP1 and SNMP2 genes. In general, dN/
dS values are low: 0.08–0.30 for SNMP1, 0.03–0.30 for SNMP2.

These values suggest that negative or purifying selection and not
positive selection acting on these genes (Nei and Gojobori, 1986),
and therefore that each of these SNMP genes is expressed as
a functional protein (Torrents et al., 2003).

4. Discussion

This study focuses on the SNMP genes of holometabolous
insects, a lineage which emerged within the Neoptera lineage
around 300 Mya and comprises >80% of named insect species and
the most successful (by number of species) insect Orders (Fig. 1B,
see Nichols and Vogt, 2008). SNMPs are related to a larger gene
family characterized by the human fatty acid transporter CD36,
a membrane protein with a broad range of described roles that
include cholesterol transport by macrophage cells, cell–cell recog-
nition or cytoadhesion between a variety of cells, and fatty acid
recognition in taste receptor cells (e.g. Rasmussen et al., 1998;
Gilbertson et al., 2005; Calder and Deckelbaum, 2006; Febbraio and
Silverstein, 2007; Fukuwatari et al., 1997; Rac et al., 2007; Gaillard
et al., 2008a,b). In our previous study (Nichols and Vogt, 2008), we
characterized and reviewed the CD36 gene family in insects using
available genome sequences, all of which were within the holo-
metabolous lineage. We suggested that the insect CD36 gene family
is comprised of 3 major clades, one of which includes the SNMP
genes. Several of the D. melanogaster CD36 family members outside
the SNMP clade have been characterized and shown to possess
similar functions as CD36: NinaD and Santa Maria function as fatty-
acid transporters (carotene) (e.g. Giovannucci and Stephenson,
1999; Kiefer et al., 2002; Yang and O’Tousa, 2007; Wang et al.,
2007); Croquemort and Peste function through cell–cell interac-
tions to mediate attacks on apoptotic cells or bacteria (e.g. Franc
et al., 1996; Stuart et al., 2005; Philips et al., 2005). Within the
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SNMP2Dmel  MIHWSLIVSALGVCVAVLGG----YCGWILFPN--MVHKKVEQSVVIQDGSEQFKRFVNLPQPLNFKVYIFNVTNSDRIQQGAIPIVEEIGPYVYKQFRQKKVKHFSRDGSKISYVQNVHFDFDAAASAP-YTQDD
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SNMP2Aaeg  ---------------------------------------MMVMNTELRQDTPQFKRWEAVPQPLDFKVYIFNVTNPYEVQMGRRPRVVEVGPYVYFQYRHKDNIRFSRDRSKVHFSQQQMYVFDAESSYP-LTEND
SNMP2Cpip  MKARNLNPPAPSQGGKLIKGKVLCSSPWVKAKAGCGAARLAKDNTELRQGTPQFKRFEALPQPLDFKVFIFNVTNPYEVQMGKRPRVVEVGPYIYFQYRQKDNIRFSRDRSKVHFSQQQLYVFDAESSYP-LTEND
SNMP2Agam  ------------------------------------------#ATELRQGTDQYKRWEALPQPLDFKVYIFNVTNPYEVMQGRRPKVVEVGPYVYFQYRQKDNVRFSRDRSKVHFSQQQMYVFDAESSYP-LTEND
SNMP2Bmor  -----MLAKYTKTIFSVSVAFLVVSIVLATWGFPKIIRKQIQKNVQISNTSKMYDKWVKLPMPLDFKIYVFNVTNRDAINQGEKPNLKEIGPYVYKQYREKIILGYG-DNDTIKYNLKKTFVFDPVASGD-LREDD
SNMP2Msex  -----MLAKHSKLFFTGSVVFLIVAIVLASWGFPKIISTRIQKSIQLENSSMMYDKWVKLPIPLIFKVYFFNVTNAEGINEGERPILQEIGPYVYKQYRERTVLGYG-PNDTIKYMLKKNFVFDPEASNG-LTEDD
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SNMP2Dmel  RIVALNMHMNAFLQVFEREITDIFQGFANRLNSRLNQTPGVRVLKRLMERIRGKRKSVLQISENDPGLALLLVHLNANLKAVFNDPRSMSVSTSVREYLFDGVRF-CINPQGIAKAICNQIKESGSKTIREKSD--
SNMP2Dpse  RIVALNMHMNAFLQVFEREITDIFQGFANRLNSRLNRTPGVRILKRLMERIRGKRKSVLQISENDPGLALLLVHLNANLKAVFNDPRSMFVHTSVREYLFDGVRF-CINPQGIAKAICNQIKESGSKTIREQSD--
SNMP2Aaeg  QLTVLNMHMNSILQIIDTQAKETITNFRSDVNNTLEKIPVVRVIKRIIEKTTP-IQSILQLAEDETYDSLRLI--NAELNRIFGRPDSMFLRTTPREFLFEGVPF-CVNVIGIAKAICKEIEKRNTKTIRVQPD--
SNMP2Cpip  PLMVLNMHMNSILQIIDNQAKETITNFRSDVNNTLEKIPIVRVIKRIIEKTTP-IQSILQIAEDETYDSLRLI--NVELNRIFGRPDSMFLRTTPKEFLFDGVPF-CVNVIGIAKAICKEIEKRNTKTIRVLPD--
SNMP2Agam  ELTVLNMHMNSILQIIDNQAKETITNFRSDVNNTLEKIPVVRVIKRIIERTTP-IQSILQIAEDETYDSLRLI--NVELNRIFGRPDTMFLRTTPKQFLFDGVPF-CVNVIGIAKAICKEIEKRNTKTIRTMPD--
SNMP2Bmor  ELTVINFSYMAAIISVQEMMPAAVGMIN------------------------------------------------RALEQFFTNLTDPFQTVKVKDLFFDGLFLNCEGDNTALGLICGKIRAEKPPTMRISKS-A
SNMP2Msex  DVTVINFPYMAALLTIQQMMPSAVAMVN------------------------------------------------RALEQFFSNLTDPFMRVKVKDLLFDGVFLNCDGDSPALSLVCAKLKADSPPTMRPAEDGV
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SNMP2Dmel  GSLAFSFFGHKN-GSGHEVYEVHTGKGDPMRVLEIQKLDDSHNLQVWLNASSEGETSVCNQINGTDASAYPPFRQR--GDSMYIFSADICRSVQLFYQTDIQYQGIPGYRYSIGENFINDIGPEHDNECFCVDKLA
SNMP2Dpse  GSLAFSFFGHKN-GSGHDVYEVHTGKGDPMKVLEIQKLDDSHNLQVWLNASTEGETSVCNQINGTDASSYPPFRQR--GDSMYIFSADICRSVQLFYQADIQYEGIPGYRYSIGENFINDIGPEHDNECFCVDKLA
SNMP2Aaeg  GSMKFSFFNHKN-MTNDGTYTINTGIKEPALTQMIEYWNGRNTLDRWINQSA-GSSSKCNKIVGTDGSGYPPFREG--VERMTIFSSDICRTVDIKYVGPSSYEGIPALRFETDSHFLNEIGPEYGNDCYCVNRIP
SNMP2Cpip  GSMKFSFFNHKN-MTEDGIYTINTGVKNALETQMIEFWNGKNMLDKWSNSSR-GSSMTCNKIEGTDGSGYPPFREG--VQRMTIFSSDICRTVDIKYVGSSSYEGIPAARYVTDDNFLNKIGPEHNNDCYCVNRIP
SNMP2Agam  GSLRFSFFSHKN-MTDDGMFTINTGIKDPSRTQMIELWNGRTTLDVWNNRSS-GLSSSCNKIHGTDGSGYPPFRTG--VERMTIFSTDICRTVDIKLTGSSSYEGIPALRYEIDNNFLHEIGPEYGNDCYCVNKIP
SNMP2Bmor  NGFYFSMFSHMN-RTVSGPYEMVRGTENLSDLGHVISYQGKRIMSAWD-------DQYCGQLNGTDSTIFPPLEDGNIPEKLYTFEPDICRSLFASLVGKDTLFNISTYYYEISDMTLGSKSANPDNKCFCK---R
SNMP2Msex  NGYYFSMFSHLN-RTETGPYEMVRGTEDVFALGNIVSYKEKKSVSAWG-------DEYCNRINGSDASIFPPIDENNVPERLYTFEPEICRSLYASLAGKATLFNISTYYYEISSSALASKSANPDNKCYCK---K
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SNMP2Dmel  NVIKRKNGCLYAGALDLTTCLDAPVILTLPHMLGASNEYRKMIRG-LKPDAKKHQTFVDVQSLTG---TPLQGGKRVQFNMFLKSINRIGITENLPTVLMPAIWVEEGIQLNGEMVAFFKKKLISTLKTLNIVHWA
SNMP2Dpse  NVIKRKNGCLYAGALDLTTCLDAPVILTLPHMLGASNEYRKMIRG-LNPDAKKHQTFVDVQSLTG---TPLRGGKRVQFNMFLKSINRIGITENLTTVLMPAIWVEEGIQLNGEMVAFFKKKLINTLKALNIVHWA
SNMP2Aaeg  KAIVKNNGCLYKGALDLSTCFDAPVVLTHPHMMGAAQEYTSLIDG-LYPDPEKHQIFVDVEPLTG---TPLNGGKRVQFNMFLRRIDSIRLTDRLQTTLFPVLWIEEGIALNEDMVKLIDDSLMKVLTLLDIVQWV
SNMP2Cpip  KAIVKANGCLYEGALDLSTCFDAPVVLTLPHMMGAAEEYTSLIDG-MHPDPEKHQIFVDVEPLTG---TPLNGGKRVQFNMFLRRIDSIRLTDRLPTTLFPVLWIEEGIALNEDMVKLIDDSLMKILTILDIVQWT
SNMP2Agam  KSIVKSNGCLYKGALDLSNCFDAPVVLTLPHMLGVAEEYTALIDG-MDPEPERHQIFVDVEPYTG---TPLNGGKRVQFNMFLRRIDAIKLTDRLQPTLFPVIWIDEGIALNEDMVKLIDDSLMKVLSLLDVVQWV
SNMP2Bmor  NGSVKHDGCLLMGVLNLAPCQGAPAIASLPHFYLGSDELADFFGDGIKPDKEKHNTYVHLDPITG---VVIKGVKRLQFNIELRNVPSVPQLKEVPSGLFPLLWIEEGAEIPEWLRKEIMDSHT-MLWYVDAARWL
SNMP2Msex  DWSASHDGCLLMGVFNLMPCQGAPAIASLPHFYLASEELLEYFEDGVKPDKEKHNTYVYIDPVTG---VVLKGVKRLQFNIELRNMPRVPQLQAVPTGLFPMLWIEEGAVMTPDLQQELRDAHA-LLSYAQLARWI
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SNMP2Dmel  TLCGGIGVAVACLIYYIYQRGRVVE-----PPVK---------------------------------------------------------------------------
SNMP2Dpse  ALCGGAGVALISLLYYLYQKGRGEE-----APLK---------------------------------------------------------------------------
SNMP2Aaeg  MIGSGLLLAIIMPIVYFIKRRPSSG--SITPTLTTTTSTVSISDGGGLGGNPQK-------------------------------------------------------
SNMP2Cpip  MIAIGLFLAISMPILYFTKRRPSSG--TITPTLTTTTSAASIPERGGLGGNPDK-------------------------------------------------------
SNMP2Agam  LIGVGLLLAVLMPTVYFVKRCRGEGSRTVSPAVTATTSAASLSTVAGVTGDRSK------------------------------------------------------- 
SNMP2Bmor  VLAVAVVAVLVSATLVARSAALIPWPRNSNSISFILGNSVNTSKVHS--------------------------------------------------------------
SNMP2Msex  ILAAAIILAIIATITVARSTSLISWPRNSNSVNFIIGPMVN-DKMR---------------------------------------------------------------

B

Fig. 3. (continued).
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SNMP clade, SNMP1 has been shown to be required for the
chemosensory detection of the fatty acid pheromone CVA (Benton
et al., 2007; Jin et al., 2008), perhaps similar to a reported associ-
ation of CD36 with mammalian taste cells and its possible function
in fat detection (Fukuwatari et al., 1997; Gilbertson et al., 2005;
Gaillard et al., 2008a,b). Our study demonstrated structural simi-
larities of the insect CD36-related genes that argued for a common
origin, and further suggested that homologues of these genes are
represented in species throughout the holometabolous lineage
(Nichols and Vogt, 2008).

Our previous study (Nichols and Vogt, 2008) suggested there
may be multiple subgroups within the SNMP clade. For the current
study, we cloned and sequenced SNMP genes from D. melanogaster
and A. aegypti and used these to remodel available SNMPs and to
identify SNMPs from additional species; we also used available
Lepidoptera SNMP sequences to identify SNMP genes from B. mori.
Analysis of these remodeled and additional sequences suggests the
insect SNMPs are organized into two sub-clades, SNMP1 and
SNMP2, presumably deriving from a common ancestor.

Both SNMP1 and SNMP2 are expressed in a variety of tissues. In
their study of SNMP1Dmel function in antenna olfactory neurons,
Benton et al. (2007) noted expression in both non-antennal and
antennal tissue; within the antennae it was reported in neurons
and non-neurons (presumably sensilla support cells). For the

current study, we cloned and sequenced SNMP1Dmel mRNAs from
head (including antennae), leg and wing tissues (see Supple-
mental Materials Table 2). PCR analysis showed SNMP1Dmel,
SNMP2Dmel, SNMP1Aaeg and SNMP2Aaeg expression in heads/
antennae, legs and wings (Fig. 2). We identified SNMP2Bmor
cDNAs in larval EST libraries derived from maxillary galea (che-
mosensory antenna), silk glands and midgut (see Supplemental
Materials Table 2). Two recent studies have shown that
SNMP1Dmel is required for the detection of the pheromone CVA
and proposed specific molecular models underlying this require-
ment through direct interaction with the CVA receptor protein,
either mediating the transfer of CVA from odorant binding protein
to receptor (Benton et al., 2007), or acting as an inhibitory subunit
of the receptor (Jin et al., 2008). However, the broad expression
pattern of the SNMPs suggests that the function of these genes
may be more general than those proposed, or that the SNMPs have
diverse functions specific to the different tissues. Mammalian
CD36, the defining member of the overall gene family, also
expresses in a wide range of tissues and displays a range of
phenotypes that might broadly be described as fatty acid trans-
port and cell-cell recognition, similar to the D. melanogaster CD36
homologues NinaD, Santa Maria, Croquemort and Peste (see
Nichols and Vogt, 2008). The question remains whether SNMPs
show similar functions.

SNMP Gene Family
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Fig. 4. Neighbor joining tree of SNMP sequences noted in Supplementary Materials (Table 2) (MEGA4, complete gap deletion); bootstrap support is indicated by symbol with
branches collapsed at 50% (unmarked nodes have 50–79% bootstrap support). This tree is unrooted; however, the asterisk notes the position the Clade 3 node in Fig. 1A.
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A challenge of mining a genome database is confirming the genes
are expressed as functional proteins. Here, we used analysis of non-
synonymous and synonymous nucleotide changes (dN/dS) to suggest
that the dipteran SNMPs analyzed in this study are expressed and
functional. dN/dS analysis is a test for evolutionary selection acting on
homologous DNA sequences. Nucleotides of individual homologous
codons are compared, noting nucleotide changes that change the
amino acid (non-synonymous change) and nucleotide changes that
do not change the amino acid (synonymous change). Assuming that
all nucleotides have an equal probability of changing over evolu-
tionary time, observing a disproportionate number of changes in
synonymous or non-synonymous changes suggests positive (dN/
dS> 1) or negative selection (dN/dS< 1) (e.g. Hughes and Nei,1988).
For example, analysis for positive selection has been used to attempt
identification of ligand binding sites in chemosensory receptors (e.g.
Tunstall et al., 2007). More importantly, selection can arguably only
act on genes that are in fact expressed and functional, and therefore

dN/dS analysis should be useful to indirectly suggest that a gene is
expressed and functional. Torrents et al. (2003) compared 1659
functional and 1703 pseudo- (presumed non-functional) genes from
the human genome database: dN/dS values were broadly distributed
for both categories, but about 90% of expressed genes had values at or
below 0.2, while about 80% of pseudogenes had values at or above
0.2. Our analysis (Table 3) yielded values ranging from 0.03 to 0.30,
with most below 0.20; these values suggest that most if not all of the
SNMPs are expressed as functional proteins.

Using dN/dS analysis to indirectly suggest functional expression
should be useful for studies involving large gene families such as
chemosensory genes (including odor receptors, odorant binding
proteins, gustatory receptors), and especially where genome
sequences are available from closely related species permitting
comparison of orothologous sequences. Direct methods such as
PCR (e.g. Robertson and Wanner, 2006) or microarray surveys (e.g.
Zhang et al., 2004) require considerable effort and only confirm

Table 1
Comparison of Intron/Exon Sizes for homologous introns.
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Intron (In) positions (a–n) are noted in Fig. 3; intron sizes are noted in yellow cells and exon sizes in white cells. An entry of ‘‘1’’ indicates a non-annotated 5’ exon, but an
identifiable homologous intron boundary at the 5’ end of the next exon. ‘‘?’’ under Bm-S2 indicates a region of missing sequence data (see Supplementary Materials: Methods
and Sequence Data). Dm, D. melanogaster; Dp, D. pseudoobscura; Aa, Ae. aegypti; Ag, An. gambiaea; Cp, C. pipiens qu.; Bm, B. mori; S1, SNMP1; S2, SNMP2. (For interpretation of
the references to colour in this table legend, the reader is referred to the web version of this article.).
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mRNA expression, not the expression of a functional protein;
selection-based analysis, while indirect, assumes functional protein
expression. Our study suggests a limit for the applicability of this
approach in evolutionary distance (time) between compared
species (Fig. 1B): comparisons between fly species (65–43 Mya) and
between mosquito species (200–245 Mya) generated values, but
many comparisons between flies and mosquitoes (w240 Mya)
failed due to saturation of changes within sites (the formulae for dS
and dN approaches infinity as the number of changes approaches
saturation). Thus the analysis may be limited to comparing species
which diverged within the past 200–250 million years.

Members of the SNMP1 and SNMP2 sub-clades of the insect
CD36 gene family appear to be represented at least throughout the
holometabolous lineage. We hope this study will provide the
community with information that will encourage further study of
these genes in a broad range of species. SNMPs appear to have
important functions in chemoreception; comparative analysis
should significantly contribute to clarifying those functions.
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